Robust Decision-Making with Model Uncertainty in Aerospace Systems
نویسندگان
چکیده
Actual performance of sequential decision-making problems can be extremely sensitive to errors in the models, and this research addressed the role of robustness in coping with this uncertainty. The first part of this thesis presents a computationally efficient sampling methodology, Dirichlet Sigma Points, for solving robust Markov Decision Processes with transition probability uncertainty. A Dirichlet prior is used to model the uncertainty in the transition probabilities. This approach uses the first two moments of the Dirichlet to generates samples of the uncertain probabilities and uses these samples to find the optimal robust policy. The Dirichlet Sigma Point method requires a much smaller number of samples than conventional Monte Carlo approaches, and is empirically demonstrated to be a very good approximation to the robust solution obtained with a very large number of samples. The second part of this thesis discusses the area of robust hybrid estimation. Model uncertainty in hybrid estimation can result in significant covariance mismatches and inefficient estimates. The specific problem of covariance underestimation is addressed, and a new robust estimator is developed that finds the largest covariance admissible within a prescribed uncertainty set. The robust estimator can be found by solving a small convex optimization problem in conjunction with Monte Carlo sampling, and reduces estimation errors in the presence of transition probability uncertainty. The Dirichlet Sigma Points are extended to this problem to reduce the computational requirements of the estimator. In the final part of the thesis, the Dirichlet Sigma Points are extended for real-time adaptation. Using insight from estimation theory, a modified version of the Dirichlet Sigma Points is presented that significantly improves the response time of classical estimators. The thesis is concluded with hardware implementation of these robust and adaptive algorithms on the RAVEN testbed, demonstrating their applicability to real-life UAV missions. Thesis Supervisor: Jonathan P. How Title: Professor of Aeronautics and Astronautics
منابع مشابه
Relative Efficiency Measurement of Banks Using Network DEA Model in Uncertainty Situation
Traditional DEA method considered decision making units (DMUs) as a black box, regardless of their internal structure and appraisal performance with respect to the final inputs and outputs of the units. However, in many real systems we have internal structure. For this reason, network DEA models have been developed. Parallel network DEA models are a special variation which inputs of unit alloca...
متن کاملOptimal Cropping Pattern Modifications with the Aim of Environmental-Economic Decision Making Under Uncertainty
Sustainability in agricultural is determined by aspects like economy, society and environment. Multi-objective programming (MOP) model has been a widely used tool for studying and analyzing the sustainability of agricultural system. However, optimization models in most applications are forced to use data which is uncertain. Recently, robust optimization has been used as an optimization model th...
متن کاملUNCERTAINTY DATA CREATING INTERVAL-VALUED FUZZY RELATION IN DECISION MAKING MODEL WITH GENERAL PREFERENCE STRUCTURE
The paper introduces a new approach to preference structure, where from a weak preference relation derive the following relations:strict preference, indifference and incomparability, which by aggregations and negations are created and examined. We decomposing a preference relation into a strict preference, anindifference, and an incomparability relation.This approach allows one to quantify diff...
متن کاملMeasuring robust overall profit efficiency with uncertainty in input and output price vectors
The classic overall profit needs precise information of inputs, outputs, inputs and outputs price vectors. In real word, all data are not certain. Therefore, in this case, stochastic and fuzzy methods use for measuring overall profit efficiency. These methods require more information about the data such as probability distribution function or data membership function, which in some cases may no...
متن کاملEnhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملRobust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008